

Editorial

Expanding the Scope of Foam Characterization

The science of foams continues to evolve, and with it come new challenges for experimental measurement. Researchers are increasingly working with precious or highly concentrated systems, where only a few milliliters are available for testing. In parallel, many industrial applications require the characterization of foams formed outside the analytical device whether it is a barista milk foam, a shaving cream, or a protein-based culinary foam.

To support these evolving needs, the FOAMSCAN™ has been enriched with new accessories. A small-volume measuring tube now opens the door to rigorous foam analysis using only 10 to 20 mL of sample, without compromising thermal control or data precision. In addition, new modules dedicated to pourable foams and corable firm foams make it possible to characterize externally generated systems while maintaining robust image analysis and liquid fraction measurements.

Through these developments, our objective remains unchanged: provide science-based, quantitative tools that make foam research more accurate, more versatile, and more relevant to real formulations.

We look forward to seeing how these new capabilities will support your work and inspire future research.

Enjoy your reading, and don't hesitate to share your questions or application ideas with us.

The TECLIS Team

FOAMSCAN™
Foam analyzer & defoamer tester

TRACKER™
Optical Drop Tensiometer &
Interfacial rheometer

FOAMSCAN™ equipped with the small diameter Double-walled cylindrical glass measuring tube and the gas sparging base

Measuring foams produced externally

The FOAMSCAN™ platform delivers science-based foam characterization with precisely controlled generation, whether by gas sparging or mechanical stirring. In some research fields, however, the foam must be generated outside the instrument and analyzed only after formation.

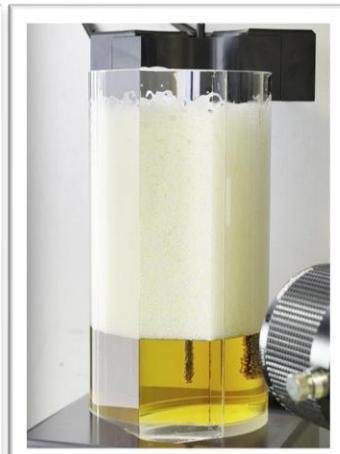
To address this need, dedicated devices have been developed for:

- Foams sampled by pouring (beer, dairy foam, detergents...)
- Firm foams sampled by coring (egg white, whipped cream, shaving foam...)

Both systems deliver a full set of measurements using image analysis and conductivity-based liquid fraction quantification.

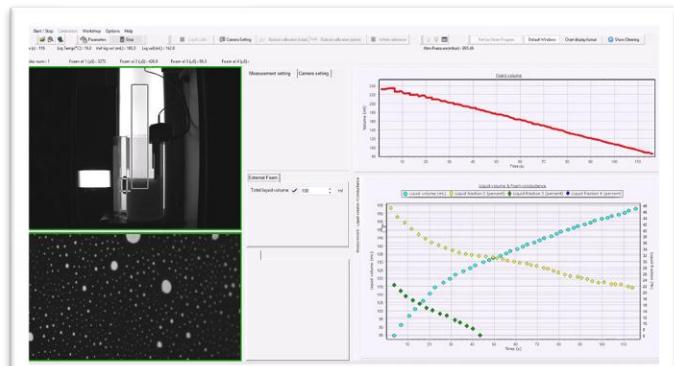
FOAMSCAN™

Equipment for foams sampled by pouring


This equipment is designed for foams produced externally (beverage overrun, barista milk foam, surfactant foam tests...) and transferred into the measuring tube.

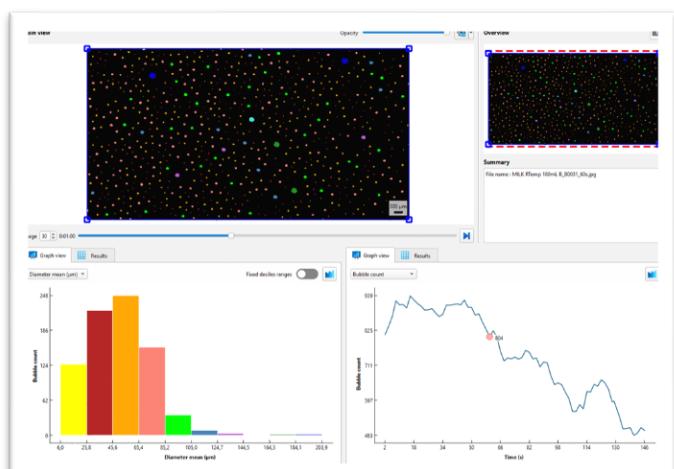
The equipment is composed of:

- 500 mL borosilicate glass tube equipped with a right-angle prism for high-quality image analysis


Cow milk Foam made with
Nespresso Aeroccino

Regular Blond beer

- Holding base ensuring perfect alignment on the FOAMSCAN™ unit
- Immersed conductivity electrodes and temperature probe quantify liquid drainage and thermal conditions.

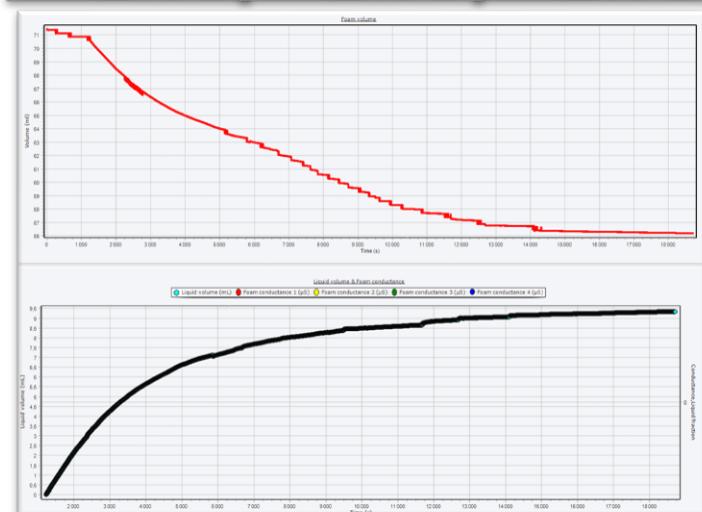
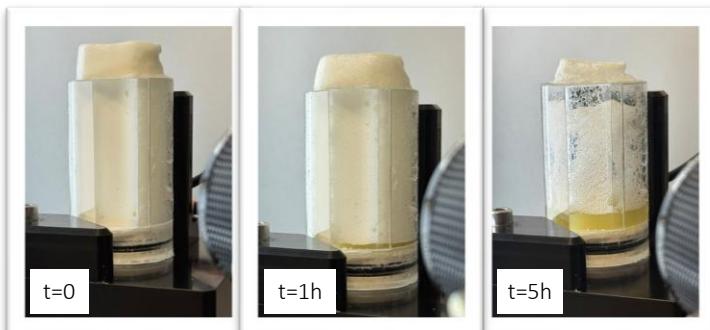

Once the foam is poured into the tube, the software automatically processes foam volume (by image analysis), Liquid volume and Liquid fraction (by conductance) and Foam structure imaging through the prism.

Measurement of Cow milk Foam using FOAMSCAN™

At the end of the run, the FOAMSCAN™ software outputs Foam Stability properties including foam volume half-life time (sec), liquid stability half-life time (sec), liquid fraction stability (drainage) and foam density stability.

Bubble size distribution and statistical analysis are obtained using BubbleStatistics™ software.

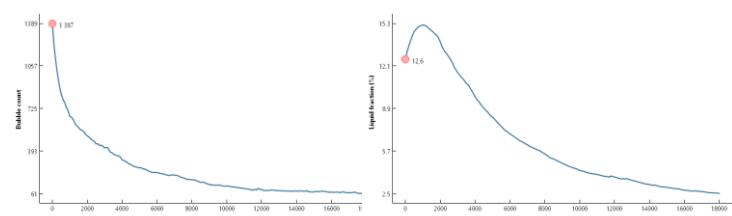
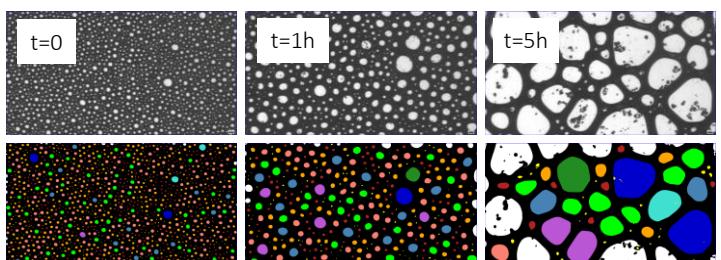
Statistical analysis of Cow milk Foam structure using
BubbleStatistics™ software



FOAMSCAN™

Equipment for firm foams sampled by coring

Firm foams cannot simply be poured. To enable their characterization, a dedicated open-ended coring tube has been designed for direct sampling.

Sampling is performed by coring directly into the foam using the 60mL double-open borosilicate glass tube equipped with a right-angle prism. Vertical electrodes and temperature probe are mounted on a holding base for perfect positioning.



Once the sample is introduced into the tube and mounted on the FOAMSCAN™. The FOAMSCAN™ software calculates foam volume (by image analysis), Liquid volume and Liquid fraction (by conductance) and captures images of the foam structure through the prism.

FOAMSCAN™ measurement of egg white sampled by coring

At the end of the measurement, the FOAMSCAN™ software delivers Foam Stability properties including foam volume half-life time (sec), liquid stability half-life time (sec), liquid fraction stability (drainage) and foam density stability.

Bubble size distribution and statistical metrics are provided by BubbleStatistics™ software.

Statistical analysis of white egg structure using BubbleStatistics™ software

TECLIS Scientific

Application notes and Theory

Explore our latest theory insights and application notes on the Teclis website.

From product brochures and customized quotations to in-depth discussions on interfacial science, Teclis supports you at every stage of your project.

Get in touch and let's turn your needs into actions.

CONTACT US

